Likelihood Based Inference for Dynamic Panel Data Models

Seung C. Ahna
Arizona State University

Gareth M. Thomas
Quantitative Micro Softwareb

Abstract

This paper considers maximum likelihood (ML) based inferences for dynamic panel data models. We focus on the analysis of the panel data with a large number (N) of cross-sectional units and a small number (T) of repeated time-series observations for each cross-sectional unit. We examine several different ML estimators and their asymptotic and finite-sample properties. Our major finding is that when data follow unit-root processes without or with drifts, the ML estimators have singular information matrices. This is a case of Sargan (1983) in which the first order condition for identification fails, but parameters are identified. The ML estimators are consistent, but they have nonstandard asymptotic distributions and their convergence rates are lower than $N^{1/2}$. In addition, the sizes of usual Wald statistics based on the estimators are distorted even asymptotically, and they reject the unit-root hypothesis too often. However, following Rotnitzky, Cox, Bottai and Robins (2000), we show that likelihood ratio (LR) tests for unit root follow mixtures of chi-square distributions. Our Monte Carlo experiments show that the LR tests with the p-values from the mixed distributions are much better sized than the Wald tests, although they tend to slightly over-reject the unit root hypothesis in small samples. It is also shown that the LR tests for unit roots have good finite-sample power properties.

\textbf{JEL Classification Codes:} C23, C40

\textbf{Keywords:} dynamic panel data, maximum likelihood, singular information matrix.

Acknowledgment

The first author gratefully acknowledges the financial support of the College of Business and Dean's Council of 100 at Arizona State University, the Economic Club of Phoenix, and the alumni of the College of Business. We would like to thank participants in the econometrics seminar at Rice University, the Eighth Annual Texas Econometrics Camp, the University of California at San Diego, Pennsylvania State University, and the University of California at Los Angeles.

a Corresponding Author: Seung C. Ahn, Department of Economics, W.P. Carey School of Business, Arizona State University, Tempe, AZ 85287; email: miniahn@asu.edu.

b The views and research contained in this paper represent those of the individual authors, and not of Quantitative Micro Software.