The Hong Kong University of Science and Technology
Dept of Information Systems, Business Statistics
and Operations Management
Seminar Announcement

Predicting Time to Upgrade under Successive Product Generations

by

Mr Xinxue (Shawn) Qu
Ivy College of Business
Iowa State University

Date: 10 October 2018 (Wednesday)

Time: 10:00 - 11:30 am

Venue: ISOM Conference Room 4047, LSK Business Building

Abstract: In the presence of successive product generations, most customers are repeat buyers, who may decide to purchase a future product generation before its release. As a result, after the new product generation enters the market, its sales often show a declining pattern, making traditional bell-shaped diffusion models unsuitable for characterizing the timing of product upgrades by customers. In this study, we propose a *survival model with exponential-decay baseline function* (Expo-Decay model) to predict customers’ time to upgrade to a new product generation. Compared with existing proportional hazard models, the Expo-Decay model is parsimonious and easy to interpret. In addition, empirical tests using data for a major sports video game series show that the Expo-Decay model performs better than existing parametric models in both model fitting and prediction accuracy. Furthermore, we propose and test several extensions of the Expo-Decay model. Empirical results obtained using the Expo-Decay model also confirm that customers’ previous adoption and usage patterns are robust predictors of their time to upgrade to a new product generation. In particular, we find that (i) potential switching customers who have adopted the previous generation are more likely to upgrade; (ii) heavy players tend to upgrade earlier; (iii) specialized customers demonstrate a lower probability to upgrade. These findings can help firms better understand customers’ upgrade behaviors and develop more personalized promotions to target customers.

Bio: Xinxue (Shawn) Qu is a PhD candidate in Information Systems at Ivy College of Business, Iowa State University. His primary research interests include business analytics, multi-generation technology diffusion, and database management. In his research, he adopts a variety of quantitative methods including analytical modeling, econometric modeling, data mining/machine learning, and optimization. He has published in *MIS Quarterly* and *Decision Sciences*. He has actively presented his research at major conferences including the *INFORMS Annual Meeting*, the *Workshop on Information Technology and Systems (WITS)*, and the *Conference on Information Systems and Technology (CIST)*. He has served as a reviewer for *Journal of Management Information Systems* and the *International Conference on Information Resources Management*. His achievements in research were acknowledged by Iowa State’s Ivy College of Business, which awarded him with the inaugural Outstanding Doctoral Student Research Award in 2018 and the college-wide PhD Student Research in Excellence Award in 2017.